Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data
نویسندگان
چکیده
Assessing reliability of global models is critical because of increasing reliance on these models to address past and projected future climate and human stresses on global water resources. Here, we evaluate model reliability based on a comprehensive comparison of decadal trends (2002-2014) in land water storage from seven global models (WGHM, PCR-GLOBWB, GLDAS NOAH, MOSAIC, VIC, CLM, and CLSM) to trends from three Gravity Recovery and Climate Experiment (GRACE) satellite solutions in 186 river basins (∼60% of global land area). Medians of modeled basin water storage trends greatly underestimate GRACE-derived large decreasing (≤-0.5 km3/y) and increasing (≥0.5 km3/y) trends. Decreasing trends from GRACE are mostly related to human use (irrigation) and climate variations, whereas increasing trends reflect climate variations. For example, in the Amazon, GRACE estimates a large increasing trend of ∼43 km3/y, whereas most models estimate decreasing trends (-71 to 11 km3/y). Land water storage trends, summed over all basins, are positive for GRACE (∼71-82 km3/y) but negative for models (-450 to -12 km3/y), contributing opposing trends to global mean sea level change. Impacts of climate forcing on decadal land water storage trends exceed those of modeled human intervention by about a factor of 2. The model-GRACE comparison highlights potential areas of future model development, particularly simulated water storage. The inability of models to capture large decadal water storage trends based on GRACE indicates that model projections of climate and human-induced water storage changes may be underestimated.
منابع مشابه
Statistical downscaling of GRACE gravity satellite-derived groundwater level data
With the continued threat from climate change, population growth and followed by increasing water demand, the need for hydrological data with high spatial resolution and proper time coverage to be felt more than ago. Therefore, having data such as terrestrial water storage changes and groundwater level changes with high resolution spatial helps to plan and make decisions for water resource mana...
متن کامل2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models
[1] Satellite gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) provide new quantitative measures of the 2005 extreme drought event in the Amazon river basin, regarded as the worst in over a century. GRACE measures a significant decrease in terrestrial water storage (TWS) in the central Amazon basin in the summer of 2005, relative to the average of the 5 other summer...
متن کاملBringing GRACE Down to Earth.
Introduction NASA’s Gravity Recovery and Climate Experiment (GRACE), which is a joint mission of the United States and Germany, uses a pair of coupled satellites to measure spatial and temporal changes in the Earth’s gravity field. From these data, estimates of changes (time-variable anomalies) in mass are derived. In turn, the mass changes are attributed primarily to changes in water content (...
متن کاملGRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas
[1] Texas experienced the most extreme one-year drought on record in 2011 with precipitation at 40% of long-term mean and agricultural losses of ~$7.6 billion. We assess the value of Gravity Recovery and Climate Experiment (GRACE) satellite-derived total water storage (TWS) change as an alternative remote sensing-based drought indicator, independent of traditional drought indicators based on in...
متن کاملGlobal modelling of continental water storage changes – sensitivity to different climate data sets
Since 2002, the GRACE satellite mission provides estimates of the Earth’s dynamic gravity field with unprecedented accuracy. Differences between monthly gravity fields contain a clear hydrological signal due to continental water storage changes. In order to evaluate GRACE results, the state-of-the-art WaterGAP Global Hydrological Model (WGHM) is applied to calculate terrestrial water storage ch...
متن کامل